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Bayesian Optimization of Electrode Conditioning of Ni(-Fe)
Electrodes for the Alkaline Oxygen Evolution Reaction
J. Raphael Seidenberg, Clara Gohlke, Raphael Diebold, Vera Seidl, Anna K. Mechler,
Alexander Mitsos, and Dominik Bongartz*

Efficient alkaline water electrolysis requires highly active electro-
des for the sluggish oxygen evolution reaction (OER). NiFeOxHy

materials are among the most active OER electrocatalysts, and
their activity can be tailored, among other methods, by electro-
chemical conditioning. However, there is a lack of systematic
approaches to optimize the conditioning process to achieve
the best electrode activation. A promising way to develop such
approaches is to use mathematical models. While mechanistic
models are not readily available and hard to develop, data-driven
models might offer a straightforward alternative. The use of
Bayesian optimization (BO) with Gaussian processes to improve
the electrode conditioning process of a Ni-Fe bulk electrode is

proposed. With this approach, an electrode conditioning process
yielding a stronger activity enhancement compared to previous
manual optimization is identified; at the same time, fewer experi-
ments are also required. It is further shown that this also allows to
transfer knowledge to new materials: transfer learning starting
from the experimental data for the Ni-Fe electrode allows optimi-
zation of the conditioning of a Ni electrode with fewer experi-
ments than applying BO to the Ni electrode from scratch.
Overall, the potential of using data-driven numerical optimization
in a hardware-in-the-loop approach for electrode conditioning is
highlighted.

1. Introduction

The efficiency of alkaline water electrolysis is limited by the sig-
nificant kinetic overpotentials of the oxygen evolution reaction
(OER) at the anode.[1] Therefore, highly active electrode materials
that enable lower kinetic overpotentials for the OER are a key to
achieving efficient water electrolysis. One promising catalyst
material class is NiFeOxHy.[2–6] The activity of NiFeOxHy electrodes
was shown to be strongly improved by electrode conditioning
using potential cycling.[7] Such a conditioning could enable high
electrode activity while reducing the cost and labor of electrode
fabrication by replacing other synthesis steps.[7]

Electrode conditioning using potential cycling to increase the
electrode activity has been extensively investigated and applied to,
e.g., steels and nickel-based materials.[8–15] Possible explanations in

terms of underlying mechanisms often rely on the duplex layer
model proposed by Burke et al.,[11] in which both an anhydrous
and a hydrous oxide layer form on themetal surface. The formation
of the created layers is assumed to depend on the parameters of
the potential cycling process.[7,8,16] E.g., cathodic potentials have
been associated with a reduction and rearrangement of the anhy-
drous layer that facilitates the growth of the hydrous layer, and
anodic potentials with a thickening of the anhydrous layer.
Lower scan rates have been associated with a more efficient oxide
layer growth per cycle due to sufficient time for mass transport,
and higher scan rates with more growth cycles in a fixed time.
Despite many works aimed at understanding the underlying pro-
cesses, procedures for efficiently finding the best electrode condi-
tioning parameters for a given electrode material remain unclear.
In the literature, the electrochemical conditioning has been studied
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by experimentally testing different combinations of parameter
values or by varying one or two parameters at a time.[8,9,13]

Similarly, in our previous work,[7] we performed amanual opti-
mization based on trend identification of the electrode condition-
ing of a Ni-Fe electrode by varying different parameters of the
potential cycling such as lower and upper potential limit as well
as scan rate. A 47� 6mV decrease of the potential at 10mA cm�2

was achieved, which could be maintained during 100h of opera-
tion at 100mA cm�2. The correlation between activation and the
respective protocol parameters was investigated for different
Ni-Fe alloys. Similar activation trends were found for all materials.
The trends were explained with the tailored formation of the
duplex layer oxide. For the trend identification, the parameters
were mostly varied independently, i.e., in a one-factor-at-a-time
approach, to assess the influence of each parameter. One disad-
vantage of such an approach is that interdependencies between
parameters are neglected. As the optimal lower potential limit is
known to depend on the upper potential limit,[1,10] both were also
altered simultaneously. However, other interdependencies that
are not taken into account might exist. Additionally, as the
method is prone to noisy experimental observations and a signif-
icant standard deviation was observed when testing for repro-
ducibility, a threefold repetition of each experiment was
performed. This led to a total of 24 experiments (eight experi-
ments with three repetitions each) with a conditioning duration
of 30 min (excl. preparation time). This presents a considerable
experimental effort, especially since longer conditioning dura-
tions need to be considered in the future as they appear to lead
to a higher increase in activity,[7,8] and it might be desirable to
optimize the conditioning for several materials.

Model-based approaches could potentially enable faster opti-
mization of electrode conditioning in terms of fewer required
experiments. Though, as the underlying mechanisms in electrode
conditioning are complex and have not been fully understood,
mechanistic models describing all the effects of the electrode
conditioning process on electrode activity are not readily avail-
able. Their development is likely to require years of modeling
and numerous experiments. Instead, data-driven models might
be a straightforward alternative. Bayesian optimization (BO) with
Gaussian processes (GPs) is a promising data-driven approach for
optimization with few data points and costly experiments[17] and
has a wide range of applications including reaction and catalyst
optimization[18–20] as well as optimization based on expensive
simulations, e.g., computational fluid dynamics.[21] Being a
data-driven approach, BO with GPs does not require any preex-
isting model or knowledge about the system to be optimized.
Compared to other data-driven approaches (e.g., reinforcement

learning), BO with GPs has the advantages of quantifying
uncertainty and considering both expectation and uncertainty
of the model prediction for efficient exploration of the search
space.[17,22,23]

Here, we apply a BO approach to electrode conditioning.
Using a GP model allows us to take into account interdependen-
cies between parameters as expected to exist in electrode con-
ditioning. We parameterize a cyclic voltammetry electrode
conditioning process and iteratively optimize this process for a
Ni-Fe electrode with 30 wt% of Fe to maximize its activity. We
compare the results with the results obtained for the same
Ni70Fe30 material and experimental setup in our previous work.[7]

Moreover, we investigate if the BO approach gives better activity
at a similar budget of experiments and appears to be a suitable
method to optimize electrode conditioning.

Another open question is how knowledge on the electrode
conditioning could be transferred between different materials.
Transfer learning is a promising strategy to transfer knowledge
between different but related tasks.[24,25] To investigate this pos-
sibility, we apply a rather simple transfer learning BO approach to
optimize the electrode conditioning of Ni99.99 by making use of
data gathered for Ni70Fe30 and compare it to a plain BO approach.

2. Experimental Section

We employed BO using a hardware-in-the-loop approach
(Figure 1). As the goal is to compare not only the achieved acti-
vation but also the number of required experiments to our pre-
vious work,[7] we did not use any of the previously collected data
herein. Instead, we started with a set of initial experiments deter-
mined by an adapted Latin hypercube sampling. Based on these
initial experiments, we trained the GP model. As output of the GP
model, we used the achieved difference in potential (ΔE10) at
10mA cm�2. It was calculated as

ΔE10 ¼ E10,after � E10,before (1)

where E10,before and E10,after are the average potentials of a 10min
chronopotentiometry experiment at 10mA cm�2 before and after
the conditioning, respectively. This relatively low current density
of 10 mA cm�2 was chosen due to the experimental setup’s lim-
ited capability to reliably measure larger current densities
(>100mA cm�2). The chosen value also allows a straightforward
comparison with the results of our previous work.[7] To obtain an
indication whether the observed trends also hold at larger cur-
rent densities, which are closer to industrial conditions, we also
have included the achieved potential difference at 100mA cm�2

Figure 1. Overview of iterative hardware-in-the-loop approach.
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(ΔE100) obtained from a 60s chronopotentiometry measurement
in Appendix C. As input of the GP model and parameter values to
be determined by optimization, we used three parameters
describing the cyclic voltammetry conditioning profile. Using
the GP model, the parameter values of the next experiment were
determined by optimizing the expected improvement in terms of
minimizing ΔE10. Based on this, the next conditioning experiment
was conducted in the lab, always using a new electrode for each
iteration with the determined parameters, and the result was
used to train an updated GP model. Model training, optimization,
and experiment were carried out in a loop until the termination
criterion was fulfilled.

In the following, we will elucidate the different parts of the
iterative optimization procedure in more detail and explain
how the approach was adapted to a transfer learning approach.

2.1. Experimental Setup and Technique

The electrochemical experiments were conducted according to
the procedure described in Gohlke et al.[7], where the utilized
electrochemical flow cell can also be seen. It features 1 cm x
1 cm parallel electrodes with an electrode spacing of 3 mm. A
Hg/HgO reference electrode (ALS), a glassy carbon counter elec-
trode (SIGRADUR G, Glassy Carbon, HTW), and a Ni or Ni-Fe plate
(Ni99.99, Ni70Fe30, HMW Hauner) working electrode was used. The
composition of the working electrode material is given in wt%, as
indicated in the subscript. For electrode preparation, the
electrode was ground (7000 grit size), polished with an
alumina-water-slurry (MicroPolish Suspensions, Buehler; polish-
ing machine LaboPol-20, Struers) with decreasing grain size
(1 μm, 0.3 μm, 0.05 μm), ultrasonicated in ultrapure water for
5 min, and dried. Experiments were conducted at room temper-
ature (RT), ambient pressure, and in 1 M KOH, prepared from
ultrapure water and KOH pellets (min. 85.0% KOH, CHEMSOLUTE).
The Fe concentration was adjusted to 110� 10 ppb by adding Fe
in diluted HNO3 (ICP-026 calibration standard, Agilent
Technologies). For the experiment, the flow cell, sealed with a
torque of 0.8 Nm (MicroClick MC2, PROXXON), was aligned verti-
cally for efficient gas removal from the electrodes. From the PTFE
reservoir, the electrolyte ran through the flow cell in a single-pass
with a volume flow of 3 mL/min (Ismatec Reglo Digital Pump,
4 channels à 12 rolls).

The electrochemical protocol consisted of an activity mea-
surement before and after the conditioning. The activity was

determined by first performing electrochemical impedance spec-

troscopy at open circuit potential (100kHz–10 Hz, 10 mV rms),

followed by cyclic voltammetry (1.0–1.6V, 3 cycles) at 10 and

100mV s�1 and a chronopotentiometry at 10mA cm�2 for

10min and at 100mA cm�2 for 60s. The conditioning was per-

formed for 30min (see next subsection for details on the applied

conditioning). A schematic overview of the electrochemical pro-

tocol can be seen in the Supporting Information of the previous

work.[7] The potentials are reported vs. RHE (see Supporting

Information of the previous work[7] for conversion) and are

100% iR-corrected with the resistance from the respective EIS

measurement. The raw data can be found on Zenodo.[26]

When conducting the experiments, each parameter combina-
tion is measured once by conditioning a new electrode and then
returned to the model to keep the experimental effort low. This is
favored by the GP model considering the data not as ground
truth but as potentially noisy. The noise level of the training data
is learned by the GP during the training process.

2.2. Parametrization of Cyclic Voltammetry Profile for
Conditioning

The cyclic voltammetry profile for conditioning was parameter-
ized using three parameters (see Figure 2): the lower potential
limit EL, the upper potential limit EU, and the scan rate ν.
Values for both EL and EU are given versus RHE. The duration
of the conditioning Δt was fixed at 30 min.

For the optimization, bounds on the parameters had to be
defined (see Table 1). The bounds for EL and EU were chosen
to reduce intense bubble formation caused by hydrogen and oxy-
gen evolution, which would be difficult for the experimental
setup to handle and would be potentially difficult to translate
to an industrial scale. We chose a maximum scan rate of
500mVs�1 to limit the parameter space, while including com-
monly investigated scan rate values.[8,10,27] Additionally, a
constraint was imposed ensuring a difference of at least 0.15V
between the lower and upper potential limit

EL þ 0.15V ≤ EU: (2)

2.3. Determination of Initial Dataset

An initial dataset, consisting of four data points, was selected
based on an adapted Latin hypercube sampling using the
pyDOE Python package.[28] The number of data points was cho-
sen based on in-silico trials, in which artificial test data sets were

Figure 2. Parametrization of cyclic voltammetry profile for electrode
conditioning with parameters p1, p2, and p3.

Table 1. Bounds on the parameters defining the cyclic voltammetry profile
for conditioning.

Parameter Lower bound Upper bound Unit

EL �0.35 1.45 V

EU �0.2 1.6 V

ν 10 500 mV s�1
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used to observe that the model only starts to predict trends with
at least four data points. With fewer artificial data points, the
model predicted constant values for all the parameter space
besides neighborhoods of the training data points. This might
be related to having three parameters as inputs of the GP model.
As Latin hypercube sampling returns data points from a hyper-
cube, it does not automatically respect the constraint given by
Equation (2). Although there is literature on modified Latin
hypercube sampling algorithms that can handle constraints,[29]

no readily available implementation was found. Therefore, an
adapted procedure was employed instead: The four data points
were determined by first sampling eight data points by Latin
hypercube sampling and then discarding all data points that
did not fulfill Equation (2). The required number of eight data
points to result in four feasible data points was identified by trial
and error. For each of the four data points, an experiment was
conducted, and the resulting ΔE10 was recorded to complete
the initial dataset.

2.4. Bayesian Optimization with Gaussian Process Model

At each iteration of the hardware-in-the-loop approach shown in
Figure 1, the GP model was trained based on the experimental
data obtained in the last iteration and all iterations before. The GP
model predicts ΔE10 as a function of EL, EU, and ν. Additionally, it
provides an estimate of the uncertainty of the prediction. To cre-
ate the GP model, we used our open-source software package
MeLOn.[30] MeLOn uses the GP model from the gpytorch
Python package[31] and allows to translate the GP model into
an optimization model compatible with our open-source deter-
ministic global optimizer MAiNGO.[32]

When training the GP model, the input values were scaled
such that the lower and upper bounds given in Table 1 corre-
spond to 0 and 1, respectively. The output values were standard-
ized to a mean of 0 and a standard deviation of 1. The scaling and
standardization were performed using the MinMaxScaler and the
StandardScaler from the sklearn Python package.[33] As men-
tioned above, the measurements are known to be noisy.
However, no repeated experiments were performed in this work,
and, for a fair comparison, we did not want to include any noise
estimate based on our previous work.[7] Therefore, we gave no
noise estimate to the model. Instead, we allowed for homosce-
dastic noise to be learned to account for potentially noisy meas-
urements.[17,31] For the prior noise, we chose a mean of 0 and a
variance of 0.5. The variance was chosen based on the assump-
tion that the variance in the objective should be higher than the
variance in the noise, such that the trends in the data are signifi-
cant compared to the noise. Finally, a covariance function with a
matern value of three was chosen, and 1000 training iterations
(i.e., steps performed to determine the GP model for the current
iteration of the hardware-in-the-loop approach shown in
Figure 1) were performed.

During BO, the prediction of the GP model as well as the
estimated uncertainty of the prediction were considered. In
our case, we did this by using the commonly used expected

improvement acquisition function[34] as the optimization
objective. Therefore, our optimization problem formulation
can be stated as

max
EL , EU , ν

EI μGP, σGP,ΔE10,minð Þ
s:t: μGP ¼ μGP EL, EU , νð Þ,

σGP ¼ σGP EL, EU , νð Þ,
EL þ 0.15 ≤ EU

(3)

where EI represents the expected improvement acquisition
function, μGP represents the expected ΔE10 predicted by the
GP, σGP represents the estimated standard deviation of the pre-
dicted ΔE10 given by the GP, and ΔE10 represents the minimal
ΔE10 found among the available data points. At each iteration
of the hardware-in-the-loop approach in Figure 1, this optimi-
zation problem was solved with MAiNGO[32] until a global opti-
mum of the acquisition function was achieved within a relative
and absolute tolerance of 0.001. All other settings of MAiNGO
were left at their default value.

As a termination criterion, we decided to terminate based on
visual inspection of the results in terms of model prediction and
achieved improvement. After eleven conducted experiments,
the BO approach had explored the most promising region with
several experiments and had also explored some adjacent cor-
ners without finding any improvement. Therefore, we decided
to terminate. Note that further experiments could be used,
ensuring a more complete exploration of the search space
and reducing the probability of missing potentially better
points; this would, however, ultimately increase the experimen-
tal effort. Initial attempts to terminate when reaching a pre-
defined minimum value of the expected improvement were
unsuccessful because this caused the BO to terminate prema-
turely during the first iterations.

2.5. Transfer Learning for Optimization of Electrode
Conditioning of Similar Material

Finally, the transferability of existing knowledge from one mate-
rial to another was investigated. We made use of the data points
collected for Ni70Fe30 in the first part of this BO study to optimize
the conditioning for Ni99.99 via transfer learning.[24,25]

Different approaches for transfer learning for BO have been
proposed in literature.[35,36] A common strategy is to use a single
GP model for both the source and target task.[36] Many works
have examined dedicated approaches for constructing the kernel
function, setting the GP prior, and accounting for heterogeneous
data scales and noise levels between tasks.[36] Here, we adopted a
rather simple transfer learning approach following the common
strategy of using a single GP model for both source and target
tasks: We added a fourth input m to the GP model that reflects
the material and is 0 for Ni70Fe30 and 1 for Ni99.99. For reasons of
simplicity and compatibility with the already applied GP training
and optimization process using MeLOn[30] and MAiNGO,[32] we did
not examine the mentioned dedicated approaches in this work,
but note that they could present potential future improvements.
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This resulting optimization problem is

max
EL , EU , ν

EI μGP, σGP,ΔE10,minð Þ
s:t: μGP ¼ μGP EL, EU , ν,m ¼ 1ð Þ,

σGP ¼ σGP EL, EU , ν,m ¼ 1ð Þ,
EL þ 0.15 ≤ EU

(4)

where for the GPmodel evaluationmwas kept at the value of 1 to
optimize the conditioning for Ni99.99, and ΔE10 was taken to be the
lowest observed ΔE10 for Ni99.99. For the first iteration, ΔE10,min was
taken to be 0 mV as no conditioning of Ni99.99 has been per-
formed, yet. The initial GP model was trained purely with the
eleven experimental points obtained for Ni70Fe30 (for which m
is set to 0). Afterward, at each iteration, an additional point for
Ni70Fe30 (for which m is set to 1) was determined by solving
the above optimization problem, the point was conducted exper-
imentally, and the GP model was retrained on all available data
for both Ni70Fe30 and Ni99.99.

For the transfer learning approach, we wanted to investigate
how well a new material can be conditioned when only doing a
few experiments but the training data for the GP is augmented by
the eleven Ni70Fe30 data points gathered in the first part of this BO
study. Therefore, we decided to limit ourselves to four experi-
ments for the transfer learning approach. To evaluate the transfer
learning approach, we compared it to starting separately with a
new GP model only trained on data obtained for Ni99.99. In that
case, we decided to do more experiments, as first an initial set of
experiments for Ni99.99 is gathered to train the GP. Seven experi-
ments were performed, consisting of four initial Latin Hypercube
sampling experiments and three experiments chosen by BO.

3. Results and Discussion

3.1. Bayesian Optimization of Ni70Fe30 Conditioning

The chosen points (in terms of EL,EU, and ν) and the correspond-
ing experimentally achieved ΔE10 using the BO approach are

shown in Figure 3. A visualization of an example model iteration
as well as the parameter values and the achieved ΔE10 and ΔE100
of all the points measured experimentally can be found in
Appendices A and C (Figure A1 and Table C1–C4). Although
the values for ΔE100 are generally more negative than those
obtained for ΔE10, they show a very similar trend. The first four
points to the left in Figure 3 are based on Latin hypercube sam-
pling; it can be observed that the achieved ΔE10 is in the range of
�10mV to�30mV. The first BO experiment (Point 5) did not
result in an improved electrode activation. However, throughout
the next experiments (Points 6–9), a more negative ΔE10 and,
therefore, better electrode activation was achieved step by step.
The last two experiments (Points 10–11) could not improve the
best-found activation, but, as will be described in the following,
can be seen as an exploration of areas with high uncertainty.

The exploration of the parameter space by the model is visu-
alized by the blue markers in Figure 4 (the order in which the
points were explored can be inferred from Figure 3). After the
initial Latin hypercube points (blue crosses, Points 1–4), the BO
approach first explored the top right corner (Point 5), and then
step-by-step explored the front upper corner (Points 6–9) of the
parameter space, where it found a significant improvement in
electrode activation. After exploring that region, other areas of
the search space were examined. Point 10 was chosen at the bot-
tom front corner, while Point 11 was selected near the top front
corner again.

The visualization of the GP model prediction in terms of both
predicted ΔE10 (Figure 5a) and estimated standard deviation of
the prediction (Figure 5b) shows what the model learned. The
front upper corner is where the model learned to expect the best
electrode activation (Figure 5a). However, after it has been
explored significantly, the estimated standard deviation of the
prediction is low in that region (Figure 5b). Therefore, the
expected improvement, which was used as acquisition function
in the BO as explained above, became low in this area; accord-
ingly, other areas were subsequently explored.

While Figure 5 gives insights into the model predictions on
the three sides of the parameter space, it does not allow to

Figure 3. Chosen points (given by the values of EL, EU, and ν below the x-axis) and experimentally achieved ΔE10 for the 30-min cyclic voltammetry condi-
tioning of Ni70Fe30 at RT in 1 M KOH (blue bars). The orange line represents the best achieved ΔE10 of our previous work[7] (�47 mV) and the orange
shaded area represents the respective experimentally observed standard deviation (�6 mV). Points 1–4 (left of the blue dashed line) were determined
using Latin hypercube sampling, and Points 5–11 were determined using BO.
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see what is predicted inside. For that purpose, we visualized the
model prediction for different scan rates (Figure 6). At high scan
rates (Figure 6a), there is a strong dependency of the activation
on the applied potential window. This can be seen by the rapid
decrease of the achieved ΔE10 (increase of activation) when

approaching the potential combination of EL ¼ �0.35 V and
EU ¼ 1.6 V. At lower scan rates (Figure 6b,c), this dependency
in the potentials is not as observable. However, at lower scan
rates, the confidence intervals are relatively large as not many
experimental points were measured. Overall, we see that there
are still large areas with high uncertainty. At the same time,
predicted trends mainly occur in the most explored corner.

3.2. Comparison of Ni70Fe30 Results to our Previous Work

Using the BO approach, a significantly improved ΔE10 of �68mV
was achieved experimentally (Point 9, i.e., EL ¼ �0.35 V,
EU ¼ 1.6 V, ν ¼ 500mV=s) compared to our previous work, where
�47� 6mV (at EL ¼ �0.35 V, EU ¼ 1.6 V, ν ¼ 100mV=s) was the
best reported electrode activation. While the learned noise
of the final model is only around 0.3mV, a considerable standard
deviation was observed in the threefold repetitions of the
best point conducted in our previous work (around 6mV).
Nevertheless, the improvement of 21mV is significant. A small
positive effect of a higher scan rate (ΔE10 ¼ �20� 3mV using
500mV=s and ΔE10 ¼ �19� 2mV using 100mV=s) could also
be observed for a potential window of 0.5 to 1.6 V in our previous
work[7] but was not experimentally investigated for a larger
potential window as the increase of 1mV was low compared
to the noise level of �2-3mV. When additionally considering
the data obtained in this work, a stronger effect of the scan rate

Figure 4. Chosen points of this work (Latin hypercube sampling: blue
crosses, BO: blue circles, data in Table C1) and our previous work[7] (orange
diamonds) for the 30-min cyclic voltammetry conditioning of Ni70Fe30 at RT
in 1 M KOH. More transparent points are positioned more towards the back
in this two-dimensional projection of the three-dimensional parameter space.

(b)(a)

Figure 5. Overview of the GP model prediction for the 30-min cyclic voltammetry conditioning of Ni70Fe30 at RT in 1 M KOH. a) Predicted ΔE10 (μGP) on the
surfaces of the parameter space cube, b) predicted standard deviation σGP on the surfaces of the parameter space cube. The BO approach mostly chose
points at the top front corner, where a low ΔE10 and in the end also a low σGP is predicted. Afterward, it started exploring other areas. Predictions are
based on the final GP model (i.e., after Point 11 was included in the model training). The white surfaces represent the parts of the cube that are not part
of the feasible parameter space due to Equation (2).

(a) (b) (c)

Figure 6. Mean predicted ΔE10 (μGP) (blue) and σGP confidence interval limits (gray) for the 30-min cyclic voltammetry conditioning of Ni70Fe30 at RT in 1 M
KOH. The predictions are shown for different values of ν based on the final GP model. a) ν= 500mV s�1; b) ν= 255mV s�1; c) ν= 10mV s�1.
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can be observed for a potential window of �0.35 to 1.6 V
(�47� 6mV for 100mV=s in our previous work[7] and �68mV
for 500mV=s in this work). This dependence of the effect of
the scan rate on the potential window is also predicted by the
GP model (Figure 5a and 6), although with high uncertainty.
This example indicates that accounting for interdependencies
can be crucial when optimizing electrode conditioning, poten-
tially leading to improved outcomes.

In addition to achieving an improved electrode activation, the
number of performed experiments was reduced by the BO
approach: in our previous work,[7] 24 experiments were per-
formed, while in this work, nine experiments were performed
until the best point was found, and 11 experiments were con-
ducted overall. It should be noted that no quantitative termina-
tion criterion was used, and the termination decision was based
on visual inspection. Therefore, the total number of experiments
might be influenced by subjective judgment and could
have been chosen slightly differently. Nevertheless, the decrease
in the number of experiments is considerable, suggesting
that the method generally allows for a lower number of experi-
ments than required by our previous work based on trend
identification.[7]

One reason why the BO approach required fewer experiments
could be that no repetition of experiments was performed.
Performing no repetitions leads to less reliable measurements,
but might be beneficial overall and is favored by the fact that
the BO approach does not assume these noisy measurements
to be ground truth but instead uses them to learn a homoscedas-
tic noise during the training process.[17,31] Although the learned
noise varies a lot between the iterations and in some iterations
reached negligible values, in other iterations the noise level
reached an estimated standard deviation of up to 2mV. This
value is at the lower end of the standard deviations observed
in our previous work.[7] The large variation in learned noise is
likely due to the low number of provided data points.

Another reason why the BO approach required fewer experi-
ments could be that the chosen points differ significantly from
those of our previous work (see Figure 4). The BO approach
placed most points in the region of the parameter space pre-
dicted to have the best ΔE10 (top front corner of Figure 4), where
the best point was indeed found. In contrast, our previous work
did not explore that region at all. This can be explained by the
differences of the approaches: In our previous approach based on
trend identification, parameters were mostly varied separately to
optimize the values for each parameter. In the BO approach,
instead, all parameters were optimized simultaneously. Due to
that, the interdependency of the parameters can be taken into
account, which allows the discovery of additional, otherwise hid-
den, patterns in the data. Furthermore, in the BO approach, all
available information in terms of performed experiments is used
in every iteration to determine the most promising next param-
eter values.

We also tested how the final GP model predicts the points
measured experimentally in the previous work[7] (see Table C4).
The estimated uncertainty of all predictions is considerable
(σGP > 10mV as the regions of these points have not been

explored in this work. For most points, the prediction μGP is
within σGP of the average experimentally measured value ΔE10.
However, the model prediction for the best obtained point
(�18.9� 11.1mV) deviates significantly from the experimental
value (ΔE10 ¼ �47.2mV), showing that the model cannot reliably
predict the electrode activation in every region of the search space.
This is likely due to no sufficiently similar points having been
explored, and in the training data, all points measured with a lower
scan rate also showed a worse ΔE10 (see Table C1). Moreover, the
optimization in this work was performed to optimize ΔE10 and not
to reach good prediction over the whole parameter space.

3.3. Transfer Learning—Bayesian Optimization of Ni99.99
Conditioning

To quantify the effect of transfer learning for the electrode con-
ditioning of Ni99.99, we compare the transfer learning approach to
applying the BO approach separately for Ni99.99.

The separately applied BO approach achieved a maximum
ΔE10 value of �28mV during 7 performed experiments, while
the transfer learning approach achieved �34 mV during only 4
performed experiments (Figure 7). The separately applied BO
approach started with the adapted Latin hypercube sampling
points and did not find better points during the BO phase.
Instead, the transfer learning approach chose data points close
to the best parameter value combinations for Ni70Fe30. It started
by choosing the best working points for Ni70Fe30 and then
explored similar points by testing a lower scan rate, a lower upper
potential limit and a higher lower potential limit. A visualization of
the chosen points can be found in Appendix B (Figure B1).

Comparing the prediction for Ni70Fe30 (Figure 6) and for Ni99.99
using transfer learning (Figure 8) shows that the optimal value of
ν seems to differ for Ni99.99 and Ni70Fe30, which the model could
already learn in the four performed iterations. Similar to the
results for Ni70Fe30 (Figure 6), the predicted dependency on EL
and EU depends on the scan rate. However, for Ni99.99 the optimal
scan rate appears to be predicted in the range of around
255mV=s (see Figure 8) in contrast to the optimal value of
500mV=s found for Ni70Fe30. At the value of around 255mV=s,
ΔE10 gets lower when approaching EL ¼ �0.35 V and EU ¼ 1.6 V.
At lower (Figure 8a) and higher scan rate (Figure 8c), such a trend
cannot be observed to a similar extent in the prediction. The exis-
tence of an optimal scan rate in the intermediate range has also
been reported for transition metals before.[11,16]

The results of the transfer learning approach for Ni99.99 are in
agreement with our previous work,[7] in which a very similar best
obtained ΔE10 of�35� 7mV was found using the same potential
limits of EL ¼ �0.35 V, EU ¼ 1.6 V, and a moderately lower scan
rate of ν ¼ 100mV=s. Additionally, both an even lower scan rate
of ν ¼ 10mV=s and higher lower potential limit of EL ¼ 0.5 V were
separately found to result in a worse ΔE10

[7] as also predicted by
the GP model.

Hence, while the employed approach for transfer learning is
rather simple, it seems that transfer learning can potentially speed
up the optimization of electrode activation of new materials, when
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data for other, potentially similarly behaving materials is available.
The potential similarities between the materials likely play a key
role; without them, the approach might be unsuccessful.

4. Conclusion

In this work, we investigated the use of BO with GPs to
optimize the electrode conditioning of a Ni70Fe30 electrode in a
hardware-in-the-loop approach and compared it with prior
manual experiment-based optimization. Furthermore, we com-
pared a rather simple transfer learning approach to use knowledge
of the Ni70Fe30 conditioning when optimizing the conditioning of
Ni99.99 to the usage of a separate BO approach for Ni99.99.

For the conditioning of Ni70Fe30, the BO approach found
parameter values for the cyclic voltammetry conditioning process
giving better electrode activation in fewer experiments than our
previous and purely experimental work.[7] On the one hand, this
could be due to no performed repetitions of experiments, which
is favored by the GP learning the experimental noise. On the

other hand, the BO approach permits taking into account the
interdependencies between conditioning parameters and using
the knowledge of all past experiments to identify the most prom-
ising parameter values for the next experiment. While the
approach allows efficient optimization, the model prediction
showed significant uncertainty in large areas of the parameter
space and did not reliably match all of our previous experimental
results.[7] However, a reliable prediction over the whole parameter
space was also not the goal of this study since our BO acquisition
function intends to find points with high activation. In the future,
the procedure could be adapted to include a quantitative termi-
nation criterion reflecting the preferences of the user regarding
the trade-off between the number of experiments and the explo-
ration of areas with high uncertainty. Additionally, further con-
straints on the parameter values and an evaluation at higher
current densities (e.g., 500—1000mA cm�2) could be included
to ensure the transferability of the results to the industrial appli-
cation, and the long-term stability of the achieved activation
could be investigated and potentially included in the optimiza-
tion objective. Concerning the modeling approach, hybrid

(a) (b) (c)

Figure 8. Mean predicted ΔE10 (μGP) (blue) and σGP confidence interval (gray) for the 30 min cyclic voltammetry conditioning of Ni99.99 at room tempera-
ture in 1 M KOH. Different values of ν are shown based on the final obtained GP model when using the transfer learning approach. a) ν= 500 mV s�1;
b) ν= 255 mV s�1; c) ν= 10 mV s�1

Figure 7. Chosen points (given by the values of EL , EU , and ν below the x-axis) and experimentally achieved ΔE10 for the 30-min cyclic voltammetry condi-
tioning of Ni99.99 at RT in 1 M KOH. The two alternatives of using a separate BO approach for Ni99.99 (BO, blue bars, upper parameter values) and the transfer
learning approach (BO-TL, orange hatched bars, lower parameter values) are shown. For the separate BO approach, Points 1–4 (left of the blue dashed line)
were determined using Latin hypercube sampling, and Points 5–7 were determined using BO.
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modeling approaches could be a promising alternative that per-
mits the consideration of existing knowledge about mechanisms
and behavior in the optimization procedure, while not having to
model the complete process mechanistically. This could allow to
be more strategic about the observations that i) only a compara-
bly small region of the parameter space appears to experience
large gradients with respect to ΔE10 and ii) after the performed
iterations, a considerable uncertainty remains in the GP model
prediction in large parts of the parameter space.

For the conditioning of Ni99.99, the transfer learning approach
using the data for Ni70Fe30 gave better results than a BO approach
using a separate GP model for Ni99.99 and demonstrated that
transferring knowledge from one material to another similar
material can be advantageous. More complex transfer learning
approaches could be investigated to even better leverage prior
knowledge from other materials.

Overall, the use of model-based approaches such as the one
presented here provides a systematic approach for efficient opti-
mization of electrode conditioning processes. Thus, the electrode
activation can be maximized while requiring only a limited
amount of time and material.

Appendix A: Example Model Iteration

Appendix B: Visualization of Chosen Points
for Ni99.99

Appendix C: Data of Chosen and Measured
Points

(a)

(b)

Figure A1. Visualization of Gaussian process model prediction (μGP given
by the blue line) and uncertainty (σGP confidence interval marked by the
blue filled area) for the 30-min cyclic voltammetry conditioning of Ni70Fe30
at room temperature in 1 M KOH. In Subfigure (a), the model was trained
based on the data of the first 8 experiments. The model prediction and σGP

confidence interval are shown here only as a function of EL for fixed values
of EU ¼ 1.6V and ν ¼ 500mV=s. The crosses mark the experimental data
and are more transparent the more they differ from those values of EU and
ν. After Point 9 was experimentally measured (Subfigure (b)), the new data
point (shown as red cross) is added to the model training, and an updated
model prediction is obtained. It can be seen that both model prediction
and uncertainty are updated around the newly measured point.

Figure B1. Chosen points for the 30min cyclic voltammetry conditioning
of Ni99.99 at room temperature in 1 M KOH when using a separate BO
approach for Ni99.99 (blue, latin hypercube sampling: crosses, Bayesian opti-
mization: circles, data in Table C2) and the transfer learning approach
(orange squares, data in Table C3). More transparent points are positioned
more towards the back in this two-dimensional projection of the three-
dimensional parameter space.

Table C1. Chosen points and achieved ΔE10 and ΔE100 for the Bayesian
optimization approach applied to Ni70Fe30. The point with the best
achieved ΔE10 is marked in blue. LHS: latin hypercube sampling. BO:
Bayesian optimization.

Point
number

Method EL

[V]
EU
[V]

ν
[mV s�1]

ΔE10

[mV]
ΔE100
[mV]

1 LHS 0.475 1.325 192 �13.4 �41.1

2 LHS 0.763 1.469 367 �11.1 �17.5

3 LHS 0.027 0.574 259 �11.1 �13.0

4 LHS �0.216 0.851 487 �30.1 �52.7

5 BO �0.350 �0.200 500 �16.9 �39.8

6 BO �0.271 0.970 499 �36.4 �81.0

7 BO �0.320 1.070 500 �38.8 �79.4

8 BO �0.350 1.333 500 �52.5 �85.1

9 BO �0.350 1.600 500 �68.0 �128.5

10 BO �0.350 1.600 10 �15.8 �27.2

11 BO �0.190 1.600 500 �33.7 �69.9
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rwth-aachen.de/?id=868717. The raw data are made available
as a Zenodo repository[26] and can be accessed here: https://
doi.org/10.5281/zenodo.15877929.
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